The image of a closed convex set under a Fredholm operator

نویسندگان

  • Emil Ernst
  • E. Ernst
چکیده

The purpose of this article is two-fold. In the first place, we prove that a set is the image of a non empty closed convex subset of a real Banach space under an onto Fredholm operator of positive index if and only if it can be written as the union of {Dn : n ∈ N}, a non-decreasing family of non empty, closed, convex and bounded sets such that Dn + Dn+2 ⊆ 2Dn+1 for every n ∈ N. The second part of this article proves that in every infinite dimensional real Banach space there is a convex set which can be expressed as the union of countably many closed sets, but not as the union of countably many closed and convex sets. Accordingly, every infinite dimensional real Banach space contains a convex Fσ set which is not the image of a closed convex set under a Fredholm operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

The G-fredholm Property of the ∂̄-neumann Problem

Let H1 and H2 be Hilbert spaces and let B(H1,H2) be the space of bounded linear operators A : H1 → H2. An operator A ∈ B(H1,H2) is said to be Fredholm if first, the kernel ofA is finite-dimensional, and second the image ofA is closed and has finite codimension. An application of the open mapping theorem shows that the closedness requirement on the image is redundant. A well-known example of Fre...

متن کامل

Existence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application

‎This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017